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Abstract

Activation times in intracardiac electrograms (EGMs)
may help clinicians in detecting abnormal pathways
sustaining post-ischemic ventricular tachycardia (VT). As
they are especially accurate when estimated only from the
near-field component of abnormal ventricular potentials
(AVPs), this work proposes a novel approach for AVP
onset identification, leveraging the Hilbert-Huang
Transform (HHT) and a knee-point detection technique.

A dataset composed of 940 delineated AVPs was used.
The HHT was exploited to compute an expedient signal as
the product between the instantaneous frequency and
energy, only when the frequency fell within a specific
range. Values ranging from 0 to 490 Hz were tested for
the lower limit, while the upper limit was fixed to 500 Hz.
On the expedient signal, the cumulative area is computed,
and the AVP onset was identified as its knee-point.

Based on the absolute errors distributions and the
percentage of errors lower than 10 ms, the optimal lower
frequency threshold resulted in 110 Hz, with a median
error in the onset delineation of 13.5 ms.

This  approach could  be  relevant  for
electrophysiological studies aimed at VT suppression, by
enabling the identification of near-field components in
AVPs, and a more accurate assessment of their local
activation timing.

1. Introduction
During  cardiac electrophysiological studies,
intracardiac  electrograms (EGMs) are generally

characterized by their own local activation time (LAT),
considered as the time of activation of the EGM,
referenced to a fiducial point detected on the surface ECG
(e.g., the R peak). In the case of post-ischemic ventricular
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tachycardia (VT), the pathological EGMs recorded in the
substrate sustaining the arrhythmia, i.e., abnormal
ventricular potentials (AVPs), present altered LATs.
Indeed, the damaged areas of the myocardium can cause a
slowing down of the electrical conduction, which reflects
the occurrence of delayed EGMs. Hence, this latency is of
interest during transcatheter ablation procedures to
properly identify arrhythmogenic areas and their
conduction pathways. In the literature, several definitions
of EGM activation have been described to compute the
LAT. For instance, a study focused on investigating the
optimal LAT annotation approach to better understand
and characterize the abnormal conduction pathways [1].
Other studies [2], [3] proposed algorithms for identifying
both the onset and end of the EGMs, but without taking
into account the difference between its far-field and near-
field components. This distinction has a key role in AVPs
characterization, where isolating the pathological near-
field activation allows for a more accurate LAT
definition, related to the arrhythmogenic substrate.

In this explorative study, we introduce a novel
approach for the characterization of AVPs, aimed at
precisely delineating their onset within the EGM. Unlike
previous studies, our method focuses specifically on the
local near-field activation within the pathological
component of the signal. Specifically, the EGM time-
frequency dynamics were extracted using the Hilbert-
Huang Transform (HHT), and the AVP onset was
detected through a knee-point technique. This strategy
allows for a precise description of the conduction delay
intrinsic to the arrhythmogenic substrate.

2. Materials and methods
This study exploits the ARGO dataset, previously

presented in detail in [4]. It comprises intracardiac EGMs
recorded from nine patients with post-ischemic
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ventricular tachycardia who underwent radiofrequency
catheter ablation. Recordings were collected during sinus
rhythm following a standard electroanatomical mapping
and ablation protocol.

The full dataset includes 1962 EGMs, categorized into
one of three classes: physiological EGMs, AVPs, and
unknown. Given the objective of this work, only the 940
signals labeled as AVPs were considered. For each signal
labeled as AVP, the dataset provides the onset of the
pathological event, derived from the consensus of three
experts, which has been used in the subsequent analysis
as ground truth.

2.1.  Onset delineation algorithm

Firstly, each EGM has been preprocessed by taking a
500 ms window around the reference annotation, to
extract the segment of the signal for which we are certain
of the reliability of the acquisition (electrode in contact,
adequate contact force of the catheter, etc.). The
delineation method takes inspiration from the
Simultaneous ~ Amplitude  Frequency  Electrogram
Transformation (SAFE-T) [5] algorithm and starts by
applying the Empirical Mode Decomposition to each
EGM. From this decomposition, only the first Intrinsic
Mode Function (IMF) was kept and used to compute the
Hilbert-Huang spectrum by applying the HHT.

In line with the SAFE-T approach, an expedient signal
was computed by multiplying the instantaneous
frequency and energy, elementwise. The SAFE-T metric,
already used in prior studies [5] for identifying VT
isthmuses, was revised here to highlight AVP onset in
pathological EGMs. To this aim, only a frequency
constraint was introduced to guide the analysis: indeed, a
product signal was computed only when the instantaneous
frequency fell within a selected range; otherwise, it was
set to zero. To investigate which portions of the
frequency spectrum were most informative for detecting
the onset, all possible sub-bands ending at 500 Hz were
explored. Specifically, the lower cutoff frequency was
varied from 0 Hz to 490 Hz in 10 Hz steps, generating a
series of frequency bands that progressively narrowed
toward the upper end of the spectrum. This approach
allowed to assess how different ranges of the frequency
content contributed to the identification of the onset.

From the resulting signal, its cumulative area was
computed. Such a curve was then normalized by the total
area, producing a smooth, monotonically increasing
function between 0 and 1. This curve had a typical
sigmoid shape, which made it possible to capture the
timing of the activation by a further processing step.
Hence, the onset point was defined as the inflection point
of this sigmoid (i.e., its knee), which was identified
automatically using the Kneedle algorithm [6]. The
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Figure 1. Overview of the processing pipeline for
AVP onset detection. An example of an AVP trace is
represented in the figure, while the red line indicates
the onset predicted by the algorithm.

Onset delineation algorithm

Kneedle algorithm was used as it finds the knee of a
monotonic curve marking a sudden change in its trend.
Whenever the algorithm couldn’t detect a knee point on
the curve, then the onset was set to a default out-of-range
value (i.e., —1000). Fig. 1 provides a step-by-step
overview of the entire processing pipeline described
above.

2.2. Performance evaluation

To evaluate the performance of the proposed
algorithm, the error was computed as the difference
between the ground truth of the AVP onset and the
resulting one from the Knee point detection. After the
first error analysis, among the tested frequency values, a
narrow range was taken under consideration for the
subsequent analysis, as the one that gave the lowest
median absolute error. On this restricted set of ranges, the
percentage of absolute errors under 5, 10, and 15 ms,
inspired by [7], as well as the Pearson’s correlation
coefficient. Once the optimal frequency value was
chosen, a linear regression analysis between the ground
truth and the predicted AVP onsets was discussed.
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Figure 2. (A) Absolute onset detection error across lower frequency thresholds from 0 to 290 Hz. Median, 25th and
75th percentiles, and IQR are shown. (B) Boxplots of absolute detection error across the frequency thresholds from
80 to 170 Hz.

3. Results and discussion

Fig. 2A shows the median, 25" and 75" percentiles, as
well as the interquartile range (IQR) of the absolute error,
for the frequency threshold varying from 0 up to 290 Hz.
Notably, beyond this upper limit (i.e., 290 Hz), the
algorithm shows a progressive degradation in onset
detection, with more frequent failures resulting in default
out-of-range outputs. Hence, the distribution of absolute
errors widens significantly, leading to markedly higher
median values. Given the increasing error trend, results
beyond 290 Hz are omitted for the sake of clarity. From
this figure, the region in which the lower limit varies from
80 to 170 Hz was selected for the subsequent analysis, as
it is characterized by the lowest median absolute errors
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Figure 3. Stacked bar plot of absolute onset detection
errors percentages across frequency thresholds from
80 to 170 Hz.
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(i.e., between 13.5 and 15 ms) and IQRs (i.e., between 30
and 35 ms). Fig. 2B shows in detail the boxplot for the
selected frequency range. Fig. 3 presents a stacked bar
plot illustrating the percentage of absolute onset detection
errors across the tested frequency thresholds. As shown,
the range between 110 and 130 Hz yields the highest
percentage of detections with an error below 15 ms,
indicating these values as potential candidates for the
optimal frequency threshold. However, when also
considering the proportion of more accurate detections,
i.e., those with errors under 5 ms and 10 ms, the best
performance is obtained at 110 Hz, with a median
absolute error equal to 13.5 ms. Moreover, by also
looking at the Pearson’s correlation coefficients reported
in Fig. 4, the selection of 110 Hz yields a high correlation
between predicted and ground truth AVP onsets (about
0.63). For this optimal threshold value, a regression
analysis was performed (see Fig. S5). From this figure, a
positive correlation can be seen between the predicted
onsets and the ground truth annotations, indicating that
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Figure 4. Pearson’s correlation coefficient between
the predicted and ground truth AVP onset times,
across frequency thresholds from 80 to 170 Hz.
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Figure 5. Scatter plot comparing predicted and ground
truth AVP onset times, considering the optimal lower
frequency limit. The linear fit (red) shows a moderate
correlation (R? = 0.40)

the algorithm tends to properly detect the onset in most
cases. However, the dispersion of the points in the lower
ground-truth range (i.e., under 300 ms) suggests the
tendency of the approach to underestimate the onset.
These deviations influence the correlation coefficient by
introducing significant variance that moves the fit away
from the ideal one.

4. Conclusions

This study proposed a fully automated method for the
onset delineation of AVPs, exploiting time-frequency
decomposition through the HHT and a knee-point
detection algorithm. The approach focused specifically on
identifying the near-field activation within AVPs, instead
of estimating a global LAT for the entire EGM.

Optimal performance was achieved when selecting all
the frequencies above 110 Hz, with a good agreement
with the ground truth annotations. The onset delineation
was affected by a median absolute error of 13.5 ms. A
positive correlation with the ground truth was observed.

This framework might be a valuable tool for substrate
characterization in post-ischemic VT. In future work, this
strategy could be extended to support not only the
identification of the onset of the AVPs, but also their end,
thus enabling a full assessment of pathological near-field
duration. Moreover, alternative  time-frequency
transforms could be explored to further enhance
robustness and precision in the explored task.
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